（NA 日本気象協会

近年の気象災害の激甚化と気候変動 －異常気象多発時代に備えるには－

一般財団法人日本気象協会 執行役員CTO

政策研究大学院大学 防災•危機管理コース 講師

鈴木 靖
鈴木靖 自己紹介

秋田市出身

秋田高校卒業（昭和54年）
東京大学理学部 地球物理学科卒業（昭和58年）
日本気象協会：
気象•海洋観測，数値シミュレーションモデル，

NEDO風況予測モデル（局所風況マップ），
携帯型熱中症計
リモートセンシング技術センター（2年間）：
熱帯降雨観測衛星（TRMM）プロジェクト
https：／／appraw1．infoc．nedo．go．jp／ nedo／index．html

新聞記事を紹介する予定

一般財団法人日本気象協会

ONO
日本気象協会

社会•防災事業

－台風，豪雨，大雪，洪水，地震，津波，波浪などの気象に起因する様々な問題に対して，お客様が抱えている悩みを解決する

製造•小売などの業種，マーケティング・需給などの職種も様々

製造業様			小売業様
OTC•化粧品 花粉対策商品熱中症関連商品 日焼け止め・制汗剤			

人工知能（AI）を用いた電力需要予測サービス

日本気象協会環境・エネルギー事業部は，人工知能（AI）を活用した「電力需要予測アルゴリズム」を開発しまし
た。このアルゴリズムでは，人工知能と気象予報士がビッグデータを分析し，電力需要の予測精度を高めています。
このアルゴリズムは，平成27年度に大手新電力の電力需要予測システムで採用されました。この実績を活かし，大
手電力•新電力•電力小売などへ事業の拡大をはかります。さらに，人工知能を再生可能エネルギーや気象の予測に適
用し，気象情報サービスの付加価値向上に努めます。

近年の豪雨災害は増えているか？

歴史的な自然災害と社会変化

－1755年のリスボン地震による建物倒壊と津波と火災
$\rightarrow 10$ 万人の死者．大航海時代に繁栄したポルトガルの衰退．
－1783年のアイスランドのラキ火山噴火 \rightarrow 数年にわたる天候不順と農作物被害と飢饉。 1789年フランス革命のきつかけに．
－1585年の天正地震で大垣城が全焼焼失，長浜城も全壊． \rightarrow 地震被害で秀吉は徳川家康攻撃を断念。
－1828年のシーボルト台風により佐賀藩被災 \rightarrow 藩主交代，藩政改革と人材登用，西洋科学技術導入．明治新政府誕生。

我が国の自然災害による死者•行方不明者数 OND 日本気象協会

伊勢湾台風以後，気象技術の進歩により水•土砂災害の犠牲者 は減少したが，近年も毎年数百名前後の犠牲者がでており，犠牲者を無くすことは困難。

我が国の自然災害による死者•行方不明者数 OND 日本気象協会

年	天候の特徵
2011年	「平成23年7月新潟•福島豪雨」，9月に台風第12号及び台風第 15 号で記録的な大雨（紀伊半島）
2012年	日本海側の大雪，「平成24年7月九州北部豪雨」
2013年	北日本日本海側の所々では記録的な積雪，最深積雪の記録（酸ヶ湯），全国で暑夏，最高気温の記録（江川崎），梅雨前線や台風 の影響による大雨（初の大雨特別警報）
2014年	「平成26年8月豪雨」，2月の関東甲信越に大雪
2015年	「平成27年9月関東•東北豪雨」
2016年	8月は西日本では厳しい暑さ，北日本では前線や相次ぐ台風（4個）の影響で記録的な多雨（北海道，岩手）
2017年	「平成29年7月九州北部豪雨」
2018年	「平成30年7月豪雨」及び7月中旬以降の記録的な高温。最高気温の記録（熊谷），西日本の相次ぐ台風被害
2019年	初夏の東日本日照不足。日本海側で $40^{\circ} \mathrm{C}$ を越える暑さ前線による九州北部大雨，台風15号強風被害，台風19号大雨
2020年	令和2年7月豪雨，台風10号暴風，7月の日照不足

近年の水害•土砂災害の発生状況

国土交通省（2019）に中北が追加

日本は世界より気温上昇量が大きい

都市部の気温上昇量が大きい

都市化の影響

新聞記事を紹介する予定

出典：日経新聞（2021／5／27）
私見卓見

平年値そのものが変化している

東京（大手町）の年平均気温と平年値

東京の気温は長期的に上昇傾向にあり，過去30年間の平均値として計算された平年値そのものが上昇している。

日降水量（各地点の術睹史上1位の値を使ってランキンクを作成）

順位	都道府県	地点	観測値	
			mm	起日
1	神奈川県	箱根	922.5	2019年10月12日
2	高知県	魚梁瀬	851.5	2011年7月19日
3	奈良県	日出岳	844	1982年8月1日
4	三重県	尾篤＊	806.0	1968年9月26日
5	香川県	内海	790	1976年9月11日
6	沖縄県	与那国島＊	765.0	2008年9月13日
7	三重県	宮川	764.0	2011年7月19日
8	愛媛県	成就社	757	2005年9月6日
9	高知県	繁藤	735	1998年9月24日
10	徳島県	剣山＊	726.0	1976年9月11日
11	宮崎県	えでの	715	1996年7月18日
12	高知県	本川	713	2005年9月6日
13	静岡県	湯ケ島	689.5	2019年10月12日
14	和歌山県	色川	672	2001 年8月21日
15	奈良県	上北山	661.0	2011年9月3日
16	高知県	池川	644	2005年9月6日
17	徳島県	福原旭	641.5	2011年7月19日
18	埼玉県	浦山	635.0	2019年10月12日
19	沖縄県	多良間	629	1988年4月28日
20	高知県	高知＊	628.5	1998年9月24日

アメダスの日降水量ランキン グ上位20位のうち，2000年以降の記録が半数以上の12回 を占める。

昨年の台風19号により，箱根 で過去最大の日降水量を記録 した。

近年，大雨等の極端な気象現象の出現頻度が増加している。

大雨の発生回数は増加している

［アメダス］1時間降水量 50 mm 以上の年間発生回数

アメダスの1時間降水量50mm以上の年間発生回数は増加している．最近の10年間（2009～2018年）の回数は30年前の約1．4倍．

○降雨特性が類似している地域区分ごとに将来の降雨量変化倍率を計算し，将来の海面水温分布毎の幅や平均値等の評価を行った上で，降雨量変化倍率を設定。
$\mathrm{O} 2^{\circ} \mathrm{C}$ 上昇した場合の降雨量変化倍率は，北海道で1．15倍，
$4^{\circ} \mathrm{C}$ 上昇した場合の降雨量変化倍率は，北海道•九州北西；
$\bigcirc 4^{\circ} \mathrm{C}$ 上昇時には小流域•短時間降雨で影響が大きいため，
＜地域区分毎の降雨量変化倍率〉

地域区分	$2{ }^{\circ} \mathrm{C}$ 上昇	$4{ }^{\circ} \mathrm{C}$ 上昇	
北海道北部，北海道南部			
九州北西部	1.15	1.4	1.5
その他（沖縄含む）地域	1.1	1.4	1.5

 3時間末満の降雨に対しては適用できない
※雨域面積 100 km 2 以上について適用する。ただし，100km2未萭の場合についても降雨量変化倍率が今回設定した値より大きくなる可能性があることに留意しつつ適用可能とする。
※年超過確率 $1 / 200$ 以上の規模（より高頻度）の計画に適用する。
＜参考＞降雨量変化倍率をもとに算出した，流量変化倍率と洪水発生頻度の変化の一級水系における全国平均値

気候変動シナリオ	降雨量	流量	洪水発生頻度
$2^{\circ} \mathrm{C}$ 上昇時	約1．1倍	約1．2倍	約2倍
$4^{\circ} \mathrm{C}$ 上昇時	約1．3倍	約1．4倍	約4倍

出典：国交省 水管理国土保全局
$\because 2^{\circ} \mathrm{C}, 4^{\circ} \mathrm{C}$ 上昇時の降雨重変化倍率は，産業革命以前に比へて全球平均温度がそれぞ れ $2^{\circ} \mathrm{C}, 4^{\mathrm{C}} \mathrm{C}$ 上昇した世界をシミュレーションしたモデルから試算
－流量変化倍率は，降雨量変化倍率を乗じた降雨より算出した，一級水系の治水計画の目標とする規模（1／100～1／200）の流宣の変化倍率の平均値
\because 洪水発生頻度の変化倍率は，一級水系の治水計画の目操とする覞模（ $1 / 100 \sim 1 / 200$ ） の降雨の，現在と将来の発生䫂度の変化倍率の平均値
（例えば，ある降雨量の発生頻度が現在は $1 / 100$ として，特来ではその発生頻度か $1 / 150$ となる場合は，洪水発生頻度の変化倍率は2倍となる

誰も住んでいない所に被害は生じない

誰も住んでいないところに被害は生じない

被害（リスク）

$$
=\text { ハザード } \times \text { 暴露量 } \times \text { 脆弱性 }
$$

自然災害の場合
被害（リスク）：人的被害，インフラ被害，経済的被害
八ザード：気象•地象（大雨，台風，強風，地震など）
暴露量 ：都市•住宅の配置，海岸部の工場•交通，台風進路など
脆弱性：インフラ整備•老朽化，建築物の耐震性•耐風性など

防災気象情報は暴露量と脆弱性の軽減に役立つ

参考文献：林春男（2014）

浸水しやすい低平地に人モノが集中

参考資料

（出典）国土地理院作成資料

我が国は，洪水時の河川水位より低い

約10\％の土地に
約50\％の人口と
約75\％の資産を抱えている。

浸水しやすい土地をあらかじめ知っておく

文京区 水害ハザードマップ

過去の雨の経験値で被害が決まる

過去最大の降水量は地域で異なる

\checkmark 台風第19号の接近•通過に伴い，東日本を中心に大雨
\checkmark 関東地方では12日を中心に大雨となり，複数のアメダス地点で 総雨量が 500 mm 以上を記録
\checkmark 広い範囲で雨量 300 mm を超過
\checkmark 強風域半径 750 km の大型台風（台風15号の 2.3 倍）

台風第19号 経路図（日時，中心気圧（hPa））速報解析＊
出典：東京管区気象台資料 ※点線の経路は熟帯低気仼時の䋊を示しています。

36時間積算雨量
2019年10月12日0時～13日12時

24時間雨量最大値と既往最大比

（1000日気気象地会

＞24時間雨量既往最大比は，関東甲信から東北太平洋岸にかけて広い範囲で過去最大値 を大きく超過している。
雨量絶対値でみると千曲川流域は小さいが，既往最大比は150\％超となっている。

24時間雨量最大値

24時間雨量既往最大比

台風19号で被害のあった河川と降雨量

台風19号（東日本台風）とカスリーン台風 OND日訤気渙会

（a）東日本台風（2019年10月10～13日）

（b）カスリーン台風（1947年9月13～16日）

令和元年東日本台風（台風1919）による大雨の気候学的評価

平均值で 600 mm を超えた．第 A 2 図は 8 月 $6 \sim 11$ 日の 6 日間降水量の分布を示与。降水量は関東山地から静岡県にか けての一部地域で500mm を超え，箱横では 1082.8 mm に達 した。静岡県でも6日間降水量が 900 mm を超えたところが ある． 1 都 6 県（ 156 地点）の 6 日間の面積平均降水量を本文と同じ内挿方法で計算すると 325.6 mm （地点ことの値の単純平均は 333.9 mm ）になり，東日本台風による 4 日間降水量（ 270.7 mm ，第 3 表）を上回る。

関東大水害時（1910年8月）の1都6県の平均降水量 325.6 mm は，東日本台風（2019年10月） の 270.7 mm の1．2倍。（期間が異なることに注意）

令和元年東日本台風の4日間降水量

出典：藤部ら（2020），天気，Vol． 67

将来の気候変動の影響は？

地球温暖化はさらに進んでいる

The past six years are the hottest on record

Average annual global temperature relative to 1850－1900

ifi．気候変動に関する政府間パネル（IPCC）とは

－設立：世界気象機関（WMO）及び国連環境計画（UNEP）により1988年に設立された国連 の組織
－任務：各国の政府から推薦された科学者の参加のもと，地球温暖化に関する科学的•技術的•社会経済的な評価を行い，得られた知見を政策決定者をはじめ広く一般に利用し てもらうこと
－構成：最高決議機関である総会，3つの作業部会及びインベントリー・タスクフォースから構成

AR6／WG1報告書の概要

－地球温暖化の進行に伴い，熱波，大雨，干ばつ並びに北極の海水，永久涷土の減少な ど，気候システムの多くの変化が拡大。
－これまでの評価と比べて，世界の平均気温が $1.5^{\circ} \mathrm{C}$ 上昇する到達時期が約 10 年程度早 まる※との評価。 ※ $1.5^{\circ} \mathrm{C}$ を超える時期の中央値：2040年ごろ $\Rightarrow 2030$ 年代初頭 ＜早まった理由＞
（1）過去から現在までの気
（2）最新の傾向を踏まえ

【具体例】

気温工業化前と比べ，す に世界平均気温は1．09 ${ }^{\circ}$星。21世紀末には最大3．3 $\sim 5.7^{\circ} \mathrm{C}$ 上昇する可能性。

降水

温暖化した気候では，極端な雨期又は乾期，気象 の極端現象の深刻さが増大。

台風

非常に強い熱帯低気圧 の発生割合と，強度最大規模の熱帯低気圧のピーク時の風速は，地球規模 では，地球温暖化の進行に伴い増加。 $\qquad$$\qquad$

気候変動に人間活動が影響して いることは疑う余地がない

0.20 m 上䒜。上昇率は1901～1990年間では1．35 mm／年， 2006～2018年では3．7mm／年と増大。 21世紀末には最大 $0.63 ~ 1.01 \mathrm{~m}$ 上昇する可能性。

雪水圏 北極圏では，2050年まで に1回以上，9月（夏の終わり） に実質的に海氷のない状態。21世紀の間，グリーンランド永床の損失 が継続。

出典：文科省

出典：日本の気候変動2020
Japan Weather Association All Rights Reserved．

地球温暖化の対策には，緩和策と適応策がある。
温室効果ガスの排出量を削減する（または植林などによって吸収量を増加 させる）「緩和策（mitigation）」と，気候変化に対して自然生態系や社
会•経済システムを調整することにより温暖化の悪影響を軽減する（また
は温暖化の好影響を増長させる）「適応策（adaptation）」

地名に残る災害伝承

－「川」「池」「浜」「津」「洲」「浦」「沢」「湧」「浅」
「深」「崎」「戸」「門」「田」「谷」
\rightarrow 水に関わる地名は，過去の洪水•浸水•津波などの被害

- 「蛇」「竜」「龍」 \rightarrow 過去の大規模な土砂災害
- 「鷹」は「滝」の意味 \rightarrow 急傾斜地•崩壊危険区域
- 「梅」は埋めるの意味 \rightarrow 土砂で埋まった土地
- 「久留」「来」「呉」「暮」などの「クル」「クレ」の読み \rightarrow 土地の浸食や崩壊
－近年の豪雨災害は増えているか？
\rightarrow 水災害•土砂災害の増加．気温の上昇と大雨の増加．
- 誰も住んでいないところに被害は生じない。
- 過去の雨の経験値で被害が決まる。
\rightarrow 地域の危険度はその地域の降水量既往最大比と対応。
－将来の気候変動の影響は ？
\rightarrow 将来の日本は気温の上昇と大雨の増加が予測されている。
\rightarrow 都市部では豪雨によるインフラへの影響，熱中症等の健康影響が懸念される。
\rightarrow 緩和策と樣々な分野の適応策で対策する必要がある。

